

Composite 3D Printing Built for the Factory Floor

CBAM TECHNOLOGY: Flexible. Powerful. Rapid Production.

COMPOSITE PARTS: Stronger. Lighter. Tougher. Faster.

Ground-Breaking Technology

Impossible Objects has developed an entirely new approach to 3D industrial printing called CBAM (Composite-Based Additive Manufacturing).

Our patented process leverages high-speed 2D graphics technologies and is specifically designed for volume production of high performance composite parts. Our system can produce complex geometries, multiple parts in one build block and runs at industrial speeds.

More Advanced Materials

CBAM is the only AM technology to use long-fiber sheets of carbon or glass, bonded with thermoplastic matrix materials to make high-performance, reinforced composite parts. Our process yields parts with exceptional strength, temperature performance and chemical resistance.

We offer an unprecedented range of advanced materials—making our 3D composite technology one of the most flexible and customizable in the industry today.

Available Material Combinations

Carbon Fiber / PEEK

Carbon Fiber / Nylon 12

Glass Fiber / PEEK

Glass Fiber / Nylon 12

Materials in Development

Carbon Fiber / Nylon 6 • Carbon Fiber / Glass Fiber / Nylon 12 • Carbon Fiber / Elastomer • Glass Fiber / Elastomer

// impossible-objects.com | 847.400.9582 | 3455 Commercial Avenue | Northbrook, IL 60062

Impossible Objects [®]		CARBON FIBER	
		NYLON 12	PEEK
GENERAL PROPERTIES MEASUREMENT	TEST METHOD		
Density		1.10 g/cm³ (0.0397 lb/in³)	1.40 g/cm³ (0.0506 lb/in³)
MECHANICAL PROPERTIES MEASUREMENT	TEST METHOD	METRIC (U.S.)	METRIC (U.S.)
Notched Impact Strength	ASTM D256	7.10 kJ/m ² (3.38 ft-lb/in ²)	4.90 kJ/m ² (2.33 ft-lb/in ²)
Notched Impact Resistance (Complete Break)	ASTM D256	71.8 J/m (13.4 ft-lb/in)	49.3 J/m (9.2 ft-lb/in)
Unnotched Impact Strength	ASTM D4812	20.9 kJ/m ² (9.94 ft-lb/in²)	13.2 kJ/m ² (6.28 ft-lb/in²)
Unnotched Impact Resistance (Complete Break)	ASTM D4812	280 J/m (52.5 ft-lb/in)	168 J/m (31.5 ft-lb/in)
Tensile Strength	ASTM D638	103 MPa - 150 MPa (14.9 kpsi - 21.7 kpsi)	132 MPa - 200 MPa (19.1 kpsi - 29.0 kpsi)
Tensile Modulus	ASTM D638	9.38 GPa (1360 kpsi)	12.74 GPa (1848 kpsi)
Poisson's ratio	ASTM D638	0.44 (0.44)	0.32 (0.32)
Elongation %	ASTM D638	1.20% (1.20 %)	1.04 % (1.04 %)
Compressive Strength	ASTM D695	53.8 MPa (7.80 kpsi)	162.0 MPa (23.50 kpsi)
Ultimate Flexural Strength	ASTM D790	132 MPa (19.1 kpsi)	176.7 MPa (25.6 kpsi)
Flex modulus	ASTM D790	9.05 GPa (1312 kpsi)	12.4 GPa (1803 kpsi)
THERMAL PROPERTIES MEASUREMENT	TEST METHOD	METRIC (U.S.)	METRIC (U.S.)
Heat Deflection Temperature (HDT)	ASTM D648	167 °C (333 °F)	> 300 °C (>572°F)
Thermal Resistivity	ASTM D5470	3.23 Km/W (5.58 (hr ft °F)/BTU)	3.7 Km/W (6.41 (hr ft °F)/BTU)
Thermal conductivity	ASTM D5470	0.31 W/ m°K (0.18 BTU/(hr ft °F))	0.3 W/ m°K (0.16 BTU/(hr ft °F))
Coefficient of Thermal Expansion (CTE) - below softening point (XY)	ASTM E831	24.5 μm/m°C (13.6 μin/(in-°F))	12.6 μm/m°C (7.0 μin/(in-°F))
Coefficient of Thermal Expansion (CTE) - above softening point (XY)	ASTM E831	34.7 μm/m°C (19.3 μin/(in-°F))	10.4 μm/m°C (5.8 μin/(in-°F))
Coefficient of Thermal Expansion (CTE) - below softening point (Z)	ASTM E831	177 μm/m°C (98.2 μin/(in-°F))	65.5 μm/m°C (36.4 μin/(in-°F))
Coefficient of Thermal Expansion (CTE) - above softening point (Z)	ASTM E831	389 μm/m°C (216 μin/(in-°F))	247 μm/m°C (137 μin/(in-°F))

ASTM testing conducted at Composites Innovation Center in Winnipeg, Canada, except the testing for tensile strength and tensile modulus additionally conducted by Impossible Objects. Tensile strength and modulus, as well as other properties, can vary based on build process settings.

This representative data was tested, measured, or calculated using standard methods and is subject to change without notice. Impossible Objects makes no warranties of any kind, express or implied, including, but not limited to, the warranties of merchantability or fitness for a particular use, and assumes no liability in connection with the use of this information. The data listed here should not be used to establish design, quality control, or specification limits, and is not intended to substitute for your own testing to determine suitability for your particular application.

Carbon-Fiber Composite 3D Printing Built for the Factory Floor

CBAM-2 Printer

Ground-Breaking Technology

Impossible Objects has developed an entirely new approach to 3D industrial printing called CBAM (Composite-Based Additive Manufacturing).

Our patented process leverages high-speed 2D graphics technologies and is specifically designed for volume production of high performance composite parts. Our system can produce complex geometries, multiple parts in one build block and runs at industrial speeds.

The New CBAM-2 Printer

The CBAM-2 system is the only AM printer that uses long-fiber carbon and glass sheets bonded with high-performance thermoplastic materials to deliver parts that are stronger, lighter, with better temperature performance, and more durable than ever before.

We offer an unprecedented range of advanced materials—making our 3D composite technology one of the most flexible and customizable in the industry.

COMPOSITE PARTS: Stronger. Lighter. Tougher. Faster.

// impossible-objects.com | 847.400.9582 | 3455 Commercial Avenue | Northbrook, IL 60062

Technology	CBAM, Composite-Based Additive Manufacturing	
Speed	45 in ³ per hour	
Max Build Volume	576 in ³ (12 in x 12 in x 4 in [*]) / 9,439 cm ³ (30.5 cm x 30.5 cm x 10.2 cm) *Print height is not limited by the machine and taller heights may be possible for custom applications	
Print Resolution	600 dpi / 42 μm	
Accuracy	For part dimensions under 5 in, .005 in (125 $\mu m)$ For part dimensions greater than 5 in, 0.1% of the part dimemsion	
Layer Height	0.002 in (50 μm)	
Substrate Materials	Carbon Fiber: 12 in x 12 in (30.5 cm x 30.5 cm), 8 in x 12 in (20 cm x 30.5 cm) Glass Fiber: 12 in x 12 in (30.5 cm x 30.5 cm), 8 in x 12 in (20 cm x 30.5 cm)	
Polymer Materials	PEEK, PA12	
Operating Environment	Temperature: 59 °F (15 °C) to 86 °F (30 °C) Humidity: 20 – 70% RH, non-condensing	
System Size / Weight	140 in L x 38.5 in D x 83.5 in H; 2,800 lbs / 356 cm L x 98 cm D x 212 cm H; 1,273 kg	

Operating Services

Build Preparation Software	Compatible with commercial slicing, Netfabb, and Materialize
Printer Operating System	Proprietary software compatible with Windows
Connectivity	Wi-fi and Ethernet
Compressed Air	90 – 120 PSI, 40 CFM
Power	240 or 208 VAC, Single Phase, 20 AMP Circuit
Warranty	One year

* Specifications subject to change. May 2019.

